ANSWERS

Note:

- For questions that do not stipulate a specific level of rounding the answers given here have been rounded to a level considered appropriate for the question.
- If a question asks for an answer to be given 'to the nearest centimetre' it does not necessarily have to be given 'in centimetres' (unless that too is requested). In such a situation an answer of 234.822 centimetres could be written as 235 cm or as 2.35 m, both answers being to the nearest centimetre.

Exercise 1B PAGE 11

1	a	24°	b	49°	с	53°
2	a	168°	b	163°	с	147°
3	a	30°, 150°	b	9°, 171°	с	46°, 134°
4	11	$.2 \text{ cm}^2$	5	19.3 cm^2	6	18.1 cm^2
7	27	$.7 \text{ cm}^2$	8	17.4 cm^2	9	138.6 cm^2
10	8.7	,	11	5.9	12	8.0
13	8.6	5	14	84.9 or 95.1	15	84.7 or 95.3

Exercise 1C PAGE 20

1	58	2	12.3	3	54 or 126
4	14	5	75 or 105	6	126
7	6.7	8	75		

- **9** The pole is of length 614 cm, to the nearest centimetre.
- **10** The two shot journey is 38 metres further than the direct route, to the nearest metre.
- **11** 59 **12** 14.4 **13** 43 **14** 111
- **15** 44 **16** 62 **17** 11.9 **18** 146
- **19** The boat is then 13.4 km from its initial position, correct to one decimal place.
- **20** After eight seconds Jim and Toni are 10.7 metres apart, correct to one decimal place.
- **21** 75 or 105
 22 99
 23 617

 24 5.39
 25 135
 26 80
- **27** 160 **28** 54
- **29** The lengths of AC and BC are 672 cm and 824 cm respectively, each answer given to the nearest cm.

- **30** The smallest angle of the triangle is of size 42°, to the nearest degree.
- **31** AB is of length 8.1 cm, correct to one decimal place.
- **32** $a \approx 9.9$ cm, $\angle B \approx 79^\circ$, $\angle C \approx 58^\circ$.
- **33** Ship B is approximately 15.9 km from ship A.
- **34** Ship Q is approximately 21.0 km from the lighthouse.
- **35** To the nearest metre the height of the tower is 21 metres.
- **36** The parallelogram has diagonals of length 5.1 cm and 9.7 cm, correct to one decimal place.
- **37** The parallelogram has sides of length 6.8 cm and 10.8 cm, correct to one decimal place.
- **38 a** When AC is 2.6 metres $\angle CAB = 20^\circ$, to the nearest degree.
 - **b** When AC is 2.1 metres $\angle CAB = 28^\circ$, to the nearest degree.
- **39 a** 479 cm **b** 239 cm **c** 111 cm **d** 222 cm
- **40 a** At 5 o'clock the distance between the tip of the hour hand and the tip of the minute hand is 155 mm, to the nearest mm.
 - **b** At 10 minutes past 5 the distance between the tip of the hour hand and the tip of the minute hand is 119 mm, to the nearest mm.
- **41 a** The ship is 1.77 km from the lighthouse, correct to 2 decimal places.
 - **b** The ship is 1.17 km from the coastal observation position, correct to 2 decimal places.
- **42** The largest of the three angles is 98°, to the nearest degree.
- **43** The height of the tower is 30 metres, to the nearest metre.
- **44** Point B is 92 metres from point C (nearest metre).
- **45** $h \approx 20.0$ cm, $\angle H \approx 64^\circ$, $\angle I \approx 61^\circ$ or $h \approx 2.3$ cm, $\angle H \approx 6^\circ$, $\angle I \approx 119^\circ$
- **46** To the nearest metre B is 141 metres from C.
- **47 a** 80° **b** 96° (nearest degree)
 - **c** 29.2 cm (1 dp) **d** 52.6 cm² (1 dp)
- **48 a** $x^2 = 244 240 \cos \theta$ **b** $x^2 = 277 252 \cos \phi$ **c** 94°
- **50** The second block has the greater area, by 15 m² (nearest square metre).

Exercise 1D PAGE 28

Answers to numbers 1 to 27 not given here. (You should have checked each one on a calculator.)

28	$6\sqrt{3}$	29 $2\sqrt{10}$	$\overline{0}$ 30 $\frac{5\sqrt{6}}{2}$, _
31	$2\sqrt{13}$	32 $5\sqrt{2}$	2	

Exercise 1E PAGE 29

1	a	30°	b	$\frac{\sqrt{3}}{3}$
2	a	45°	b	1
3	a	60°	b	$\sqrt{3}$
4	a	120°	b	$-\sqrt{3}$
5	a	135°	b	-1
6	a	150°	b	$-\frac{\sqrt{3}}{3}$

7 Gradient of line = $\tan \theta$, where θ is the angle or inclination of the line.

Miscellaneous exercise one PAGE 30

1	a	11x - 7		b	$x + \hat{x}$	23		с	10x	<i>c</i> – 3
	d	13 - 10x		е	7 <i>x</i> +	11		f	1 –	23 <i>x</i>
	g	$x^2 + 8x +$	15	h	$x^{2} -$	2 <i>x</i> –	- 15	i	$2x^2$	+11x + 15
	j	$2x^2 - 11x$; + 1 !	5						
2	a	2(x + 4)		b	3(2y	+ 3))			
	с	4a(4b + 3)	c + 2	<i>a</i>)						
	d	a(a + 1)		е	(<i>x</i> +	8)(x	- 1)	f	(<i>x</i> –	(x-1)
	g	(x + 7)(x + 7)	- 2)	h	(<i>x</i> –	2)(x	- 6)	i	(x +	(x-4)(x-4)
	j	2(a+3)(a+3)(a+3)(a+3)(a+3)(a+3)(a+3)(a+3)	<i>i</i> – 3))						
3	a	$2\sqrt{5}$	b	3√5	Ī	c	$10\sqrt{2}$	2	d	30
	е	$3\sqrt{5}$	f	18	$\sqrt{2}$	g	21√1	10	h	$19 + 6\sqrt{2}$
4	0.4	1, 2.35 m								
5	Fre	om ship B,	ship	A is	9.4 k	m av	vay oi	n a b	earii	ng of 315°.

6 No it does not mean that both C and r and A and r are in direct proportion. C and r are in direct proportion because a relationship of the form C = kr for constant k does exist (in this case k = 2π). A and r are not in direct proportion because the rule linking them is not of the form A = kr. (In this case A = πr² and so A and r² are in direct proportion.)

7 Twelve of the steel frameworks would require a total of 260 metres of steel (to the next 10 metres).

Exe	ercise 2A PAGE 3	6	
1	10.8 cm 2	60.3 cm	3 8.2 cm
4	$\frac{32\pi}{3}$ cm 5	$\frac{25\pi}{3}$ cm	6 $\frac{28\pi}{3}$ cm
7	$24\pi {\rm cm}^2$ 8	11π cm ²	9 $\frac{128\pi}{3}$ cm ²
10	321 cm^2 11	108 cm^2	12 214 cm^2
13	86 cm ² 14	30 cm^2	15 41 cm^2
16	$12(2\pi - 3\sqrt{3}) \text{ cm}^2$	17 $\frac{9}{2}(3)$	π -2 $\sqrt{2}$) cm ²
18	$\frac{25}{3}(5\pi-3)$ cm ²		
19	a 29.7 cm (1 dp)	b 65	.8 cm (1 dp)
20	18.3 cm		
21	98 cm^2 to nearest cm	m ² 22 292	cm^2 to nearest cm^2
23	59°	24 7.3 (cm ²
25	Tip of minute hand	travels 12π cm	n, tip of hour hand
	travels $\frac{2\pi}{3}$ cm.		
26	180, 1.85 km	27 $\frac{10}{3}$	$\frac{\sqrt{5}}{5}$ cm, $6\frac{2}{3}$ cm
Exe	ercise 2B PAGE 41	I	
1	3 rads 2	1.5 rads	3 5 rads
4	2.5 rads 5	4 rads	6 4 rads

1	3 rads	2	1.5 rads	3	5 rads
4	2.5 rads	5	4 rads	6	4 rads
7	$\frac{\pi}{2}$ rads	8	$\frac{\pi}{6}$ rads	9	$\frac{5\pi}{6}$ rads
10	$\frac{3\pi}{4}$ rads	11	$\frac{\pi}{36}$ rads	12	$\frac{\pi}{10}$ rads
13	$\frac{4\pi}{9}$ rads	14	$\frac{13\pi}{18}$ rads	15	45°
16	60°	17	120°	18	180°
19	15°	20	36°	21	35°
22	70°	23	0.56 rads	24	1.10 rads
25	2.01 rads	26	2.97 rads	27	0.28 rads
28	1.47 rads	29	1.82 rads	30	0.45 rads
31	86°	32	132°	33	80°
34	34°	35	$\frac{1}{\sqrt{2}}$	36	
37	$-\frac{1}{\sqrt{2}}$	38	1	39	$\frac{\sqrt{3}}{2}$
40	$\frac{1}{\sqrt{2}}$	41	$\frac{1}{\sqrt{2}}$	42	$-\sqrt{3}$
43	0	44	Undefined	45	$-\frac{1}{2}$

		1		-	$\sqrt{3}$			40	0	
46		$\sqrt{3}$	4/		$-\frac{\sqrt{3}}{2}$	-		48	0	
49	$\frac{1}{2}$		50)	0			51	0.8	34
52	-0.	42	53	3	-0.75	5		54	0.1	4
55	0.8	3	56	5	0.99			57	3.6	60
58	0.7	5	59	9	0.20	rads		60	1.3	7 rads
61	0.3	4 rads	62	2	1.04	rads				
63	a	6π rad/se	ec	b	$\frac{\pi}{2}$	rad/s	ec	c	$\frac{\pi}{2}$	rad/sec
64	a	1 rev/mi	n	b	22.	5 rev	/min	с	10 1	rev/min
65										
68	12.	8	69	9	16.2			70	1.4	ł
71	a	$\frac{\pi}{2}$ rad	b	4π 3	rad	c	$\frac{5\pi}{3}$	rad	d	$\frac{11\pi}{6}$ rad
72	a	$\frac{\pi}{4}$ rad	b	3π 8	rad	c	$\frac{\pi}{20}$	rad	d	$\frac{13\pi}{20}$ rad
73	a	(Line sho	own h	ere	e not	to fu	ll size	e.)		

B 12 10 8 (The units on the line AB occur every 0.915 cm,

6

4

2

starting with zero at A.)

b Yes. Each 1 cm on AB would represent 2 cm diameter, making calibration easier.

Exercise 2C PAGE 45

1	4 cm		2	25 cm	
	13.9 cm (1 dp)			8 cm^2	
	45 cm^2			114 cm^2	
_			-		
7	276 cm^2 (neared	st cm	1 ²) 8	31.6 cm^2 (1	dp)
9	$39.1 \text{ cm}^2 (1 \text{ dp})$		10	18 cm	
11	a 90 cm^2		b	617 cm^2	
12	a 8 cm		b	5.1 cm^2	
13	a 6 cm		b	3.35 cm^2	
14	80 cm ²	15	0.37 cm^2	16	81 cm^2
17	84 cm ²	18	26.6 cm^2	19	16.6 cm^2
20	14.6 cm^2	21	11.65 cm	2	
22	a 120 cm		b	16 mm	
23	770 mm^2	24	16.4 cm	25	35%
26	269 m ²	27	233 m^2	28	125 cm
29	$16 \ 410 \ \mathrm{cm}^2$	30	177 cm		
31	a 5 cm		b	2 cm	
32	20.6 cm^2	33	8.6 %		

Miscellaneous exercise two PAGE 50

1 a
$$2x^2 + 5x - 3$$

b $3x^2 + 17x - 28$
c $x^3 + 7x^2 + 7x - 15$
d $2x^3 - 9x^2 + 7x + 6$
2 a $\frac{\sqrt{2}}{2}$
b $\frac{\sqrt{3}}{3}$
c $\frac{5\sqrt{2}}{2}$
d $2\sqrt{3}$
e $\frac{3-\sqrt{5}}{4}$
f $\frac{3+\sqrt{2}}{7}$
g $\frac{\sqrt{5}-1}{2}$
h $\sqrt{5}-\sqrt{2}$

3 The topmost point is 35 metres above ground (to the nearest metre).

- **4** a 2.26 m **b** 1.26 m
- 5 Ship B is approximately 30.8 km from ship A, on a bearing N 69° W.
- **6** The block has an area of 5270 m^2 and a perimeter of 298 metres, both answers given to the nearest integer.

Exercise 3A PAGE 56

1	a, c	e, e		2	a, b, e	
3	a	{5, 7, 9, 11}		b	{8, 10, 1	12,14}
	с	{1}		d	$\{y \in \mathbb{R}: y\}$	$y \ge 0$
4	a	18	b	-7	c	13
	d	4	е	21	f	23
	g	-27	h	5 <i>a</i> – 2	i	10a - 2
	j	$5a^2 - 2$	k	24	1	5(a+b)-2
	m	7	n	-2		
5	a	9	b	-7	c	-3
	d	-3	е	43	f	13
	g	13	h	3(4a - 7)) i	12 <i>a</i> – 7
	j	$3(a^2 - 12)$	k	$9a^2 - 12$	1	±6
	m	5	n	-2 or 9		

6 a Function cannot cope with x < 1.

b There are no numbers the function cannot cope with.

- **c** Function cannot cope with x = 0.
- **d** Function cannot cope with x = 1.

7 a Function cannot output numbers less than zero.

- **b** Function cannot output numbers less than one.
- c Function cannot output zero.
- **d** Function cannot output zero.
- **9** { $y \in \mathbb{R}: -3 \le y \le 0$ } **8** { $y \in \mathbb{R}: 5 \le y \le 8$ }
- **10** { $\gamma \in \mathbb{R}: -6 \le \gamma \le 15$ } **11** { $y \in \mathbb{R}: 20 \le y \le 40$ }
- **12** { $y \in \mathbb{R}: -1 \le y \le 9$ } **13** { $y \in \mathbb{R}: -4 \le y \le 1$ }
- **15** { $y \in \mathbb{R}: 0 \le y \le 16$ } **14** { $y \in \mathbb{R}: 0 \le y \le 9$ }
- **16** { $\gamma \in \mathbb{R}: 1 \le \gamma \le 10$ } **17** { $\gamma \in \mathbb{R}: 0.25 \le \gamma \le 1$ }
- **18** { $y \in \mathbb{R}: y \ge 1$ } **19** { $y \in \mathbb{R}: y \ge -1$ }

- **20** { $y \in \mathbb{R}: y \ge 4$ }
- **22** { $y \in \mathbb{R}: y \neq 1$ } **23** one-to-one
- 24 one-to-one **25** many-to-one

21 { $y \in \mathbb{R}: y \neq 0$ }

b x = -5

26 many-to-one 27 one-to-one

29

- 28 one-to-one
- Domain: \mathbb{R} , Range: \mathbb{R} **30** Domain: \mathbb{R} , Range: { $y \in \mathbb{R}$: $y \ge 0$ }
- **31** Domain: $\{x \in \mathbb{R} : x \ge 0\}$, Range: $\{y \in \mathbb{R} : y \ge 0\}$
- **32** Domain: $\{x \in \mathbb{R} : x \ge 3\}$, Range: $\{y \in \mathbb{R} : y \ge 0\}$
- **33** Domain: $\{x \in \mathbb{R} : x \ge -3\}$, Range: $\{y \in \mathbb{R} : y \ge 0\}$
- **34** Domain: $\{x \in \mathbb{R} : x \ge 3\}$, Range: $\{y \in \mathbb{R} : y \ge 5\}$
- **35** Domain: $\{x \in \mathbb{R} : x \neq 3\}$, Range: $\{y \in \mathbb{R} : y \neq 0\}$
- **36** Domain: { $x \in \mathbb{R}: x > 3$ }, Range: { $y \in \mathbb{R}: y > 0$ }
- Miscellaneous exercise three PAGE 59
- 1 a x = 11
- **2** {1, -1, -3, -5}
- **3** For the domain $-2 \le x \le 3$ the range is $-1 \le y \le 4$. For the domain {-2, -1, 0, 1, 2, 3} the range is $\{-1, 0, 1, 2, 3, 4\}.$
- **b** $a^3 + 3a^2b + 3ab^2 + b^3$ **4 a** $a^2 + 2ab + b^2$ **c** $a^3 + 6a^2b + 12ab^2 + 8b^3$ **d** $a^3 - 6a^2b + 12ab^2 - 8b^3$
- **5 a** A function. One-to-one.
 - **b** A function. Many-to-one.
 - **c** Not a function.
 - **d** A function. Many-to-one.
 - **e** A function. One-to-one.
 - **f** Not a function.
- 6 That part of triangle ABC not lying in any of the circles has an area of 4.3 cm^2 (correct to the nearest 0.1 cm^2).
- **7** Ship B is approximately 7.3 km from C on a bearing of 064°.
- **8** The block has an area of 6399 m^2 , to the nearest square metre.
- **9** 240 litres

Exercise 4A PAGE 68

1	A: a	(0, 1)	b 1	c $y = x + 1$
	B: a	(0, -1)	b 2	c $y = 2x - 1$
	C: a	(0, 0)	b 0.5	c $y = 0.5x$
	D: a	(0, 0)	b -1	c $y = -x$
	E: a	(0, 6)	b 3	c $y = 3x + 6$
	F: a	(0, 2)	b 0	c <i>y</i> = 2
	G: a	(0, -3)	b 1	c $y = x - 3$

- **H: a** (0, -3) **b** -2**c** y = -2x - 3**b** 0 **1: a** (0, 4) $\mathbf{c} \quad y = 4$ **J:** a (0, -3) **b** -0.5 **c** y = -0.5x - 3**K: a** (0, -0.5) **b** 1.5 **c** y = 1.5x - 0.5**c** $y = \frac{1}{3}x + \frac{4}{3}$ L: a $(0, \frac{4}{3})$ b
- **2 a** Points lie in a straight line. Equation of line is y = 2x + 5.
 - **b** Points lie in a straight line. Equation of line is y = 5x - 7.
 - Points do not lie in a straight line. С
 - **d** Points lie in a straight line. Equation of line is y = x - 4.
 - e Points lie in a straight line. Equation of line is y = -2x + 10.
 - f Points lie in a straight line. Equation of line is y = 5.
 - Points do not lie in a straight line. g
 - **h** Points lie in a straight line. Equation of line is y = 5x - 13.

3	Equation	Gradient	y-axis intercept
	y = 2x + 3	2	(0, 3)
	y = 3x + 4	3	(0, 4)
	y = -2x - 7	-2	(0, -7)
	y = 6x + 3	6	(0, 3)

4
$$y = 4x + 6$$
 5 $y = -x - 5$

- **6** Lines B, D, E, F and G are in the family, the others are not.
- 7 Lines A, D, E, G and H are in the family, the others are not.
- y = -4x 3. Yes 8
- **9** y = 2x 3. A, C, D

10	Equation	Written as $y = mx + c$	Gradient	y-axis intercept
	2y = 4x - 5	y = 2x - 2.5	2	(0, -2.5)
	4y = 3x + 7	y = 0.75x + 1.75	0.75	(0, 1.75)
	3y - 2x = 6	$y = \frac{2}{3}x + 2$	$\frac{2}{3}$	(0, 2)
	4x + 3y - 6 = 0	$y = -\frac{4}{3}x + 2$	$-\frac{4}{3}$	(0, 2)
	3x + 5y = 8	y = -0.6x + 1.6	-0.6	(0, 1.6)

11 a = 26, b = 40, c = -2

12 d = 0.5, e = -1, f = -6, g = 1.5, h = 1, i = -5

- **13 a** *P* and *t* are directly proportional. The rule is P = t.
 - **b** P and t are not directly proportional.
 - **c** *P* and *t* are directly proportional. The rule is P = 4t.
 - **d** P and t are not directly proportional.
 - P and t are directly proportional. The rule is P = 0.25t.
 - **f** *P* and *t* are directly proportional. The rule is P = 0.75t.
 - **g** *P* and *t* are directly proportional. The rule is P = 0.5t.
 - **h** P and t are not directly proportional.

Exercise 4B PAGE 73

1	a	(7,9)	b	(5, 10)	c	(3,	5)
	d	(-2, 1)	е	(-2, 3.5)	f	(12	, 1)
	g	(8, -5.5)	h	(0, 7.5)	i	(1,	1)
2	a	2	b	_4	c	2	
	d	0.5	е	-0.25	f	-1	
	g	-2	h	2.5	i	0.5	
3	a	5 units	b	5 units	c	13	units
	d	25 units	е	17 units	f	10	units
	g	$5\sqrt{2}$ units (≈ 7	.07	units)			
	h	$\sqrt{58}$ units (≈ 7	.62	units)			
	i	$\sqrt{61}$ units (≈ 7	.81	units)			
4	a	2 b $\sqrt{5}$ u	ınit	ts (≈ 2.24 units)		c	(3.5, 7)
5	a	1.6 b $\sqrt{89}$	un	its (≈ 9.43 unit	s)	c	(1.5, 5)
6	-4	or 12					
		_					

- **7 a** √82 km (≈ 9.06 km)
 - **b** $7\sqrt{2}$ km (≈ 9.90 km)
 - **c** $2\sqrt{10}$ km (≈ 6.32 km)
- 8 Stage 1 gradient is 0.2, stage 2 gradient is $\frac{5}{9}$, stage 3 gradient is 2.5.

Exercise 4C PAGE 76

1 A: y = -3, B: y = 1, C: y = -0.5x + 5, D: x = 5, E: y = x + 3, F: y = 9, G: x = -3, H: y = 3x + 2, I: x = 7, J: y = x

2 y = 0

4 y = 3x + 4, Yes

3 x = 0**5** y = 0.5x + 2, D and E

6 a
$$y = x + 2$$
 b $y = -x + 5$

- **c** y = -2x + 8 **d** y = 5x + 8 **e** y = 0.5x + 5**f** y = -0.5x - 1.5
- **g** y = 1.5x 11.5 **h** $y = -\frac{1}{3}x + \frac{4}{3}$

- **7 a** y = x + 3**b** y = -4x - 1**c** y = -3x + 43**d** y = 2x - 1**e** $y = \frac{1}{3}x + \frac{5}{3}$ **f** y = -2x + 4**g** $y = \frac{5}{3}x + 4$ **h** y = -5x + 5**8** y = 2x - 1, B and E **9** y = 0.5x + 2.5, f = 7, g = -2, h = 13, i = -2, j = 4.4.**10** (4, 0), $\gamma = -2x + 8$ 11 (6, 0), y = 4x - 24**12** F = 1.8C + 32**a** 131°F **b** 257°F **c** 14°F **d** 15°C **e** 30°C f -40°C **13** A = 0.24N + 4014 a A(-80, 20), B(120, 120), C(-100, 60), D(-60, -20), E(100, 160), F(140, 80) **b** ~224 m **c** y = 0.5x + 60**d** $\gamma = -2x - 140$ **e** y = -2x + 360**15** When t = 2, A = 3970. When A = 3850, t = 10. A = -15t + 4000**16** C = 120T + 85**17** P = 4.5N - 3650**a** \$3100 **b** \$6925 c 812
- **18** a 110, 540 b \$1660

19 $k = 0.2, L_0 = 0.45, 5$ cm.

Exercise 4D PAGE 81

- 1 A and E, B and J, C and H, F and K, G and I.
- **2** y = 2x 5
- $\textbf{3} \quad A \text{ and } D, B \text{ and } G, C \text{ and } E, F \text{ and } K, I \text{ and } J.$
- **4** $y = -\frac{1}{2}x + 5$
- **5** y = 3x + 5
- **6 a** Point B has coordinates (2, -1).
 - **b** The required equation is y = 2x 5.

Miscellaneous exercise four PAGE 82

- **1** A, C, E, F, H, I, J, L
- **2** A does not, B does not, C does, D does not, E does.
- **3** F does, G does, H does not, I does not, J does.
- **4 a** 11 **b** -1 **c** 23 **d** -8 **e** -28 **f** 14.5 **g** 12 **h** -21 **i** 7m-15 **j** m=6 **k** p=5 **l** q=7**m** r=-3 **n** s=4.5

- **5 a** (3, -5) **b** (-1, 4)
- **6 a** Domain: \mathbb{R} , Range: \mathbb{R}
 - **b** Domain: $\{x \in \mathbb{R} : x \ge 5\}$, Range: $\{y \in \mathbb{R} : y \ge 0\}$
 - **c** Domain: \mathbb{R} , Range: $\{y \in \mathbb{R} : y \ge 0\}$
 - **d** Domain: $\{x \in \mathbb{R} : x \neq 5\}$, Range: $\{y \in \mathbb{R} : y \neq 0\}$
 - **e** Domain: $\{x \in \mathbb{R} : x \neq 5\}$, Range: $\{y \in \mathbb{R} : y > 0\}$
 - **f** Domain: $\{x \in \mathbb{R} : x > 5\}$, Range: $\{y \in \mathbb{R} : y > 0\}$
- **8** a = -1, b = 4, c = 9, d = 19, e = 29, f = 11, g = 99.
- **9** $\frac{25}{2}(2\sqrt{3}-\pi)$ cm²

Exercise 5B PAGE 90

- **1** A: $y = x^2 + 1$, B: $y = x^2 2$, C: $y = x^2 4$, D: $y = (x - 3)^2 + 1$, E: $y = (x + 3)^2 - 4$, F: $y = (x - 2)^2 - 3$
- **2** G: $y = -x^2$, H: $y = -x^2 + 3$, I: $y = -(x 3)^2$, J: $y = -(x + 3)^2 + 1$
- **3** K: $y = 2x^2 2$, L: $y = 2(x 3)^2$, M: $y = 2(x + 2)^2$, N: $y = 2(x - 3)^2 - 2$

4 a
$$y = 3(x+1)^2 - 4$$

b $y = -2(x-3)^2 + 8$
c $y = \frac{1}{2}(x-4)^2 - 3$
d $y = -\frac{1}{2}(x+2)^2 + 10^2$

Exercise 5C PAGE 97

For questions **1** to **10** the sketches, not shown here, should be consistent with the information obtained in earlier parts of the question.

- 1 a x = -1**b** min at (-1, -4)**c** (0, -3)**2 a** x = 3**b** min at (3, 5)c (0, 14) **3 a** x = 1**b** max at (1, 3)**c** (0, 1) **4** a (0, 21) **b** (3, 0) and (7, 0)**c** x = 5**d** min at (5, -4)**5 a** (0, -12) **b** (-4, 0) and (3, 0)c x = -0.5**d** min at (-0.5, -12.25)**6 a** (0, 8) **b** (-2, 0) and (-4, 0)**c** x = -3**d** min at (-3, -1)7 **a** x = -2**b** min at (-2, -16)**c** (0, −12) a x=3**b** min at (3, -8)8 **c** (0, 1) 9 **a** x = 1**b** max at (1, 3)c (0, 1) **10** a x = 2**b** max at (2, 5)**c** (0, −3) **11 a,b** Check your answers with those of others in
 - your class and with your teacher.
 - Check your sketch with a graphic calculator display of the function.
 - **d** The greatest rectangular area is 49 m², dimensions 7 m by 7m (i.e. a square).

- **12 a,b** Check your answers with those of others in your class and with your teacher.
 - **c** Check your sketch with a graphic calculator display of the function.
 - **d** The greatest rectangular area is 50 m², dimensions are 5 m by 10 m (x = 5, y = 10).
- **13** a (2.5, 11.25) b 10
 - c Concave down
- **14 a** \$590 000 **b** \$545 000
 - **c** $t = 10, $530\ 000$
- **15** The maximum value of *h* is 122.5 and it occurs when t = 5.
- 16 a Concave up
 - **b** The bridge is 15 m above water level.
 - **c** x = 40
 - **d** From D to C is 40 metres.
 - e From D to E is 80 metres.
 - **f** From D to A is 30 metres.
- **17 a** Concave down
 - **b** At the midpoint of the bridge x = 150
 - **c** The vertical strut one quarter of the way along the bridge is 10 m long.
 - **d** Maximum clearance is
 - i 54 m at low tide ii 46m at high tide

Exercise 5D PAGE 102

- 1 Quadratic. $y = x^2 + 6x + 5$
- **2** Neither.
- **3** Quadratic. $y = x^2 + x + 3$
- **4** Linear. y = 5x + 1
- **5** Quadratic. $y = x^2 + 2$
- **6** Linear. $y = \pi x + \pi$
- **7** Neither.
- **8** Quadratic. $y = x^2 + 5x + 4$
- **9** Linear. y = 8x + 3
- **10** Quadratic. $y = 2x^2 + 3$
- **11** Quadratic. $y = 3(x-2)^2 + 1$
- **12** Quadratic. $y = -(x-3)^2 + 5$
- 13 a Length of side of cube 1 2 3 5 6 (L units) Surface area of cube 96 150 216 6 24 54 (n units²)

b Quadratic **c** $n = 6L^2$

14 a	Number of rows of cans (r)	1	2	3	4	5	6
	Number of cans (n)	1	3	6	10	15	21

b Quadratic **c** $n = 0.5r^2 + 0.5r$

Exercise 5E PAGE 107

 $y = (x + 2)^2 - 5$, min (-2, -5) $y = (x - 3)^2 - 7$, min (3, -7) $y = (x - 4)^2 - 6$, min (4, -6) $y = (x + 3)^2 - 6$, min (-3, -6) $y = (x - 1.5)^2 - 0.25$, min (1.5, -0.25) $y = (x - 2.5)^2 - 3.25$, min (2.5, -3.25)

- 7 $y = -(x-5)^2 + 24$, max (5, 24)
- **8** $y = 2(x-3)^2 15$, min (3, -15)
- **9** $y = -2(x-2)^2 + 12$, max (2, 12)
- **10** $y = 2(x + 1.25)^2 + 0.875$, min (-1.25, 0.875)

Miscellaneous exercise five PAGE 108

1	a	31	b	1	c 44
2	a	Concave dow	'n		
	b	Concave up			
	С	Concave dow	'n		
3	<i>a</i> =	1, b = -1, c = -	-13,	d = 0, e =	=9, f=0.
4	a	$-\frac{1}{2}$		b	$-\frac{1}{3}$
	с	5		d	y = 2x + 7
5	a	(0, 3)		b	(1, 0), (3, 0)
	C	<i>x</i> = 2		d	min at (2, -1)

)				Turnin	g point
	Equation	Cuts y-axis	Line of symmetry	Coordinates	Max or min?
	$y = x^2 + 4x + 1$	(0, 1)	x = -2	(-2, -3)	min
	$y = x^2 - 2x - 1$	(0, -1)	x = 1	(1, -2)	min
	$y = 2x^2 + 4x - 3$	(0, -3)	x = -1	(-1, -5)	min
	$y = 2x^2 + 6x - 1$	(0, -1)	x = -1.5	(-1.5, -5.5)	min

- **7 a** x = -3 **b** (-3, -4) **c** x = -1**d** (-1, -1)
- **8** A: x = 4, B: y = -3, C: y = x, D: y = x + 2, E: y = 2x + 4, F: y = -x, G: y = 0.25x + 4, H: y = 0.5x + 1, I: y = -0.5x - 1
- **9** I: y = (x 1)(x 3), II: y = (x + 2)(2 x), III: y = -(x + 1)(x + 3), IV: y = (x + 1)(x + 3)

10	a	Rule:	$\gamma = 3$	<i>x</i> + 4						
		x	1	2	3	4	5	6	7	8
		y	7	10	13	16	19	22	25	28
	b	Rule:	$\gamma = 2$	x - 1						
		x	1	2	3	4	5	6	7	8
		y	1	3	5	7	9	11	13	15
	с	Rule:	$\gamma = -$	2x + 1	17					
		x	1	2	3	4	5	6	7	8
		y	15	13	11	9	7	5	3	1
	d	Rule:	$\gamma = 5$	x - 1						
		x	1	2	3	4	5	6	7	8
		y	4	9	14	19	24	29	34	39
	е	Rule:	$\gamma = 3$	x-2						
		x	3	8	1	6	7	4	5	2
		y	7	22	1	16	19	10	13	4
11	v =	3(x - 1)	$(2)^{2} +$	3						
12	a	8 m		b 5 1	m	с	3.34	m	d 4	.58 m
13	a	I 30)0 cm	2		II	300	cm^2		
		TTT (C		2						
)0 cm	2		IV	55 c	m^2		
	b	111 60 256 c		2		IV	55 c	m ²		
Exe			m		17	IV	55 c	m ²		
Exe 1	ercis	256 c	m PA		17		55 c		_9	
	ercis x =	256 c se 6A	m PA = 3		17	2		3, <i>x</i> = -	_9	
1 3 5	x = x = x =	256 c se 6A = -5, x = = 5.5, x = ±7	m = 3 = -5		17	2 <i>4</i> 4 <i>2</i> 6 <i>2</i>	$ \begin{aligned} x &= -8 \\ x &= \pm 5 \\ x &= \pm 1 \end{aligned} $	$x_{5}^{3}, x_{7}^{3} = \frac{1}{2}$		
1 3 5 7	x = x = x = x = x =	256 c se 6A = -5, x = = 5.5, x = ±7 = -5, x =	m = 3 = -5 = -4			2 : 4 : 6 : 8 :	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$	$x_{3}, x_{3} = 0$	4	
1 3 5 7 9	x = x = x = x = x = x =	256 c se 6A = -5, x = = 5.5, x $= \pm 7$ = -5, x = = 4, x =	m = 3 = -5 = -4 5			2 : 4 : 6 : 8 : 10 :	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$	$x_{5}^{3}, x = 0$ $x_{5}^{3}, x = 0$ $x_{5}^{3}, x = 0$	4 5	
1 3 5 7 9 11	x = x = x = x = x = x = x =	256 c se 6A = -5, x = = 5.5, x = = +7 = -5, x = = 4, x = = -7, x =	m = 3 = -5 = -4 5 = 5			2 : 4 : 6 : 10 : 12 :	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$	$x_{3}, x = 0$ $x_{3}, x = 0$ $x_{3}, x = 0$ $x_{3}, x = 0$	4 5 —1	
1 3 5 7 9 11 13	x = x = x = x = x = x = x = x = x =	256 c se 6A = -5, x = = 5.5, x $= \pm 7$ = -5, x = = 4, x =	m = 3 = -5 = -4 5 = 5 = -1			2 2 4 2 6 2 10 2 12 2	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$ $x = -7$	$x_{3}, x = 0$ $x_{3}, x = 0$ $x_{3}, x = 0$ $x_{3}, x = 0$ $x_{3}, x = 0$	4 5 -1 -3	
1 3 7 9 11 13 15	x = x = x = x = x = x = x = x = x = x =	256 c se 6A = -5, x = = 5.5, x = = 4, x = = -7, x = = -6, x =	m = 3 = -5 = -4 5 = 5 = -1 = -3			2 2 4 2 6 2 10 2 12 2 14 2	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$	$ \begin{array}{c} 3, x = -3 \\ 6, x = -3 \\ 7, x = -3 $	4 5 -1 -3 6	
1 3 7 9 11 13 15 17 19	x = x = x = x = x = x = x = x = x = x =	256 c se 6A $= -5, x =$ $= 5.5, x =$ $= -5, x =$ $= -7, x =$ $= -7, x =$ $= -7, x =$ $= -1, x =$ $= -7, x =$	m = 3 = -5 = -4 5 = 5 = -1 = -3 = 5			2 2 4 2 6 2 10 2 12 2 14 2	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$ $x = -7$ $x = -7$ $x = -2$ $x = 0$	$ \begin{array}{c} 3, x = -3 \\ 5, x = -3 \\ 5, x = -3 \\ 7, x = -3 $	4 5 -1 -3 6	
1 3 7 9 11 13 15 17 19 21	x = x = x = x = x = x = x = x = x = x =	256 c se 6A $= -5, x =$ $= 5.5, x =$ $= -5, x =$ $= -7, x =$ $= -6, x =$ $= -7, x =$	m = 3 = -5 = -4 5 = 5 = -1 = -3 = 5			2 4 6 8 10 4 114 4 114 1 118 2 20 4	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$ $x = -7$ $x = -2$ $x = 0$ $x = \pm 6$ $x = -1$	$ \begin{array}{l} 3, x = -3 \\ 5, x = -3 \\ 4, x = -4 \\ 7, x = -4 \\ 5, x = -4 $	4 5 -1 -3 6 4	
1 3 7 9 11 13 15 17 19 21 23	x = x = x = x = x = x = x = x = x = x =	256 c se 6A $= -5, x =$ $= 5.5, x =$ $= -5, x =$ $= -7, x =$ $= -3$	m PA = 3 = -5 = -4 5 = 5 = -1 = -3 = 5 = 2			2 4 6 4 8 4 10 4 112 4 116 4 116 4 118 4 20 4 22 4	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$ $x = -7$ $x = -2$ $x = 0$ $x = -1$ $x = -1$ $x = -5$	$ \begin{array}{c} 3, x = -3, \\ 5, x = -3, \\ 4, x = -3, \\ 7, x = -3,$	4 5 -1 -3 6 4 3	
1 3 7 9 11 13 15 17 19 21 23 25	x = x = x = x = x = x = x = x = x = x =	256 c se 6A $= -5, x =$ $= 5.5, x =$ $= -5, x =$ $= -7, x =$	m PA $PA= 3= -5= -45= 5= -1= -3= 5= 23$			2 4 6 8 10 4 112 4 114 4 116 4 118 4 20 4 22 4 224 4 226 4	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$ $x = -7$ $x = -2$ $x = 0,$ $x = \pm \epsilon$ $x = -1$ $x = -5$ $x = 3,$	$ \begin{array}{c} 3, x = -3 \\ 5, x = -3 \\ 5, x = -3 \\ 7, x = -4 \\ 5, x = -4 $	4 5 -1 -3 6 4 3	
1 3 7 9 11 13 15 17 19 21 23	x = x = x = x = x = x = x = x = x = x =	256 c se 6A $= -5, x =$ $= 5.5, x =$ $= -5, x =$ $= -7, x =$ $= -3$	m PA $PA= 3= -5= -45= 5= -1= -3= 5= 23$			2 4 6 8 10 1 12 4 16 1 18 4 20 4 22 4 24 4	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$ $x = -7$ $x = -2$ $x = 0$ $x = \pm 6$ $x = -1$ $x = -5$ $x = 3$ $x = \pm 1$	$ \begin{array}{c} 3, x = -3 \\ 5, x = -3 \\ 4, x = -4 \\ 5, x = -4 \\ 1.5 \\ \end{array} $	4 5 -1 -3 6 4 3	
1 3 5 7 9 11 13 15 17 19 21 23 25 27	x = x = x = x = x = x = x = x = x = x =	$256 c$ se 6A $= -5, x =$ $= 5.5, x =$ $= -5, x =$ $= -7, x =$ $= -7, x =$ $= -7, x =$ $= -1, x =$ $= -12, x =$ $= -12, x =$ $= \pm 0.2$	m PA $PA= 3= -5= -45= 5= -1= -3= 5= 23$			2 4 6 8 10 4 114 4 114 2 20 4 224 2 226 4 228 4	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$ $x = -7$ $x = -2$ $x = 0$ $x = \pm 6$ $x = -1$ $x = -5$ $x = 3$ $x = \pm 1$ $x = -3$	$ \begin{array}{c} 3, x = -3 \\ 5, x = -3 \\ 4, x = -4 \\ 5, x = -4 \\ 1.5 \\ \end{array} $	4 5 -1 -3 6 4 3	
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31	x = x $x = x$	$256 c$ se 6A $= -5, x =$ $= 5.5, x =$ $= -5, x =$ $= -7, x =$ $= -7, x =$ $= -7, x =$ $= -1, x =$ $= -12, x =$ $= -12, x =$ $= \pm 0.2$	m PA = 3 = -5 = -4 5 = -4 5 = -1 = -3 = 5 = 2 3c = 2			2 4 6 8 10 1 12 1 14 1 16 1 20 2 22 4 26 2 30 3	$x = -8$ $x = \pm 5$ $x = \pm 1$ $x = -5$ $x = -4$ $x = -3$ $x = -7$ $x = -2$ $x = 0$ $x = \pm 6$ $x = -1$ $x = -5$ $x = 3$ $x = \pm 1$ $x = -3$ $x = 5$	$ \begin{array}{c} 3, x = -3 \\ 6, x = -3 \\ 7, x = -3 \\ 7, x = -4 $	4 5 -1 -3 6 4 3 5	

35	x = -1, x = 2.5	36	x = -7, x = 0.2
37	x = -3.5, x = 3	38	$x = \frac{2}{3}, x = 2.5$
39	x = 0.4, x = 0.5		
40	The number is either –	10 or	3.
41	The number is –5.		
42	When the object hits th	ie gro	bund again $h = 0$ and $t = 8$
43	t = 2	44	p = -3 or p = 11
Exe	ercise 6B PAGE 123		
1	x = -0.77, x = 0.43	2	x = -2.30, x = 1.30
3	No real solutions	4	x = -2.82, x = -0.18
5	x = -1.74, x = 0.34	6	x = -1.47, x = 0.27
7	t = 13.8	8	p = 0.22 or 2.78
9	No real solutions	10	Two real solutions

 One real solution No real solutions One real solution Two real solutions Two real solutions 16 No real solutions One real solution $x \approx -2.7, x \approx 0.7$ $x \approx -5.3, x \approx 1.3$ $x \approx 0.4, x \approx 3.6$ No real solutions $x \approx -5.7, x \approx -0.3$ $x \approx -0.2, x \approx 4.2$ x = 2.13, x = 9.87 x = 7.87, x = 0.13 No real solutions x = -7.65, x = 0.65 x = -4.19, x = 1.19 $x = 1 \pm \sqrt{6}$ x = 1, x = -1.5 $x = -5 \pm 4\sqrt{2}$ $x = 3 \pm 2\sqrt{2}$ $x = -\frac{5}{2} \pm \frac{\sqrt{35}}{2}$ $x = -\frac{5}{6} \pm \frac{\sqrt{13}}{6}$ $x = -\frac{1}{10} \pm \frac{\sqrt{21}}{10}$ x = 1.56, x = -2.56 x = 4.11, x = -0.61 x = 2.18, x = 0.15 x = 4.41, x = 1.59 x = 3.19, x = -2.19 $x = -\frac{3}{2} \pm \frac{\sqrt{5}}{2}$ x = 0.76, x = -1.09 $x = -\frac{1}{4} \pm \frac{\sqrt{41}}{4}$ $x = \frac{7}{2} \pm \frac{3\sqrt{5}}{2}$ $x = -\frac{1}{10} \pm \frac{\sqrt{101}}{10}$ $x = \frac{5}{6} \pm \frac{\sqrt{37}}{6}$ $x = -1 \pm \frac{\sqrt{2}}{2}$ 48 2 real roots no real roots 2 real roots 2 real roots 1 real root

53 no real roots

Miscellaneous exercise six PAGE 125

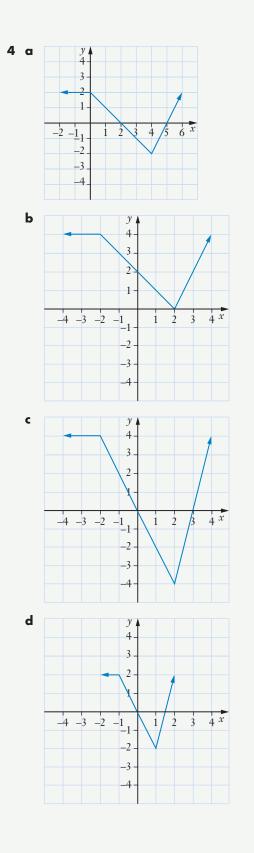
- **1** The number could be –5 or it could be 3.
- **2** A: y = -x + 60, B: y = 60, C: y = 2x 60, D: x = 60, E: y = -2x + 30, F: y = 0.5x + 30
- **3 a** AD is of length 6 units. DB is of length 6 units. The straight line through A and B has a gradient of 1.
 - **b** DE is of length 8 units. EC is of length 4 units. The straight line through D and C has a gradient of 0.5.
 - **c** The straight line through D and F has a gradient of 0.75.
- **4** a = 1, b = 1, c = 2, d = 77, e = 77, f = -1 or 3
- **5** 15 cm by 2.4 cm.
- **6** 11.2 cm²
- 7 A: $y = x^2 1$, B: $y = (x 7)^2$, C: $y = (x + 9)^2 + 2$, D: $y = (x + 5)^2 - 8$, E: $y = -(x - 4)^2 + 1$, F: $y = 2(x - 10)^2$, G: $y = 4(x + 5)^2 - 3$, H: $y = -2(x + 10)^2$ 8 8.3 cm
- 0.5 C
- **9** 11.49

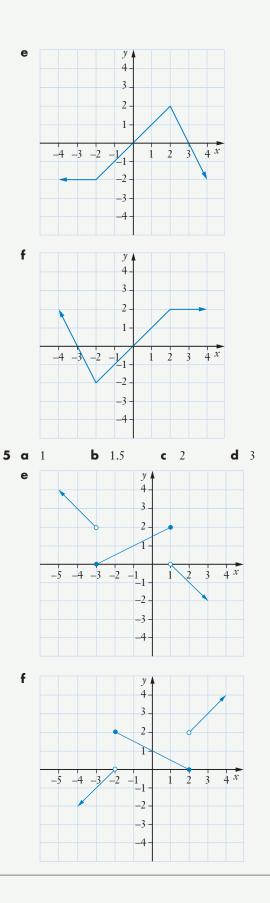
Exercise 7A PAGE 134

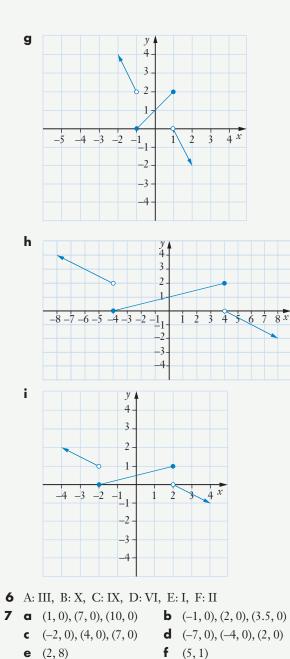
1	a	(0,1) b $(0,-5)$	5)	c (0, 8)
	d	(0, 6) e (0, 2)		f (0, 3)
2	a	(2, 0), (3, 0), (4, 0)	b	(-7, 0), (1, 0), (5, 0)
	с	(2.5, 0), (-1, 0), (0.6, 0)	d	(1, 0), (-1, 0), (7, 0)
	е	(0, 0), (0.25, 0), (3.5, 0)	f	(-1, 0), (5, 0)
	g	(-3, 0), (0, 0), (3, 0)	h	(-5, 0), (0, 0), (3, 0)
3	(2.	20,0)		
4	a	k = -6	b	(-6, 0), (-2, 0), (3, 0)
5	a	0	b	0
	c	-12	d	0, (x-6)(x+1)(x-1)
6	a	-8	b	0
	с	0, (x-2)(x-3)(x-5)		
7	a	a = 1, c = -5	b	b = -4
	c	$(-1, 0), (\frac{2}{3}, 0), (5, 0)$		

Exercise 7B PAGE 139

1 B: $y = \sqrt{x-3}$, C: $y = \sqrt{x} + 4$, D: $y = \sqrt{x+3} - 5$ 2 a $y = \frac{1}{x} + 1$ b $y = \frac{1}{x} + 2$ c $y = \frac{1}{x} - 1$ 3 a $y = \frac{1}{x+1}$ b $y = \frac{1}{x-3}$ c $y = \frac{1}{x-1}$


- **4** The graph of $y = x^3 + 1$ is that of $y = x^3$ translated up 1 unit.
- 5 The graph of $y = \frac{1}{x-1}$ is that of $y = \frac{1}{x}$ translated 1 unit to the right.
- **6** The graph of $y = 2\sqrt{x}$ is that of $y = \sqrt{x}$ dilated parallel to the y-axis, scale factor 2.
- 7 The graph of $y = (x 3)^2$ is that of $y = (x + 4)^2$ translated 7 units right.
- 8 The graph of $y = \sqrt{x-2} + 1$ is that of $y = \sqrt{x}$ translated 2 units right and 1 unit up.
- 9 The graph of $y = \frac{3}{x-1}$ is that of $y = \frac{1}{x}$ translated 1 unit to the right and dilated parallel to the *y*-axis, scale factor 3.
- **10 a** B and F **b** D **c** C, E, G and H **d** H
 - **e** $C \rightarrow E, G \rightarrow H$ **f** $A \rightarrow C, E \rightarrow G, H \rightarrow I$
- **11** A(0, 10), B(-0.51, 0), C(3.08, 0), D(6.42, 0), E(1, 17), F(5, -15), G(3, 1)
- **12 a** When P = 40, V = 10.
 - **b** When P = 20, V = 20.
 - Volume cannot be negative. With a non zero mass there must be some volume.
 - Thus V > 0 would be a suitable domain for V.
- **13** a = 4, b = 0.5, c = 4, d = 2, e = 3, f = 1, g = 3, h = -0.5, i = 3


A(0, 8), B(-2, 0), C(0, 7), D(0, 2), E($\frac{2}{3}$, 0), F(-3, 0), G(0, 9), H(0, 4), I(4, 0)


Exercise 7C PAGE 145

- **a** Reflect in the *x*-axis.
 - **b** Dilate parallel to the *x*-axis, scale factor 0.25.
 - **c** Dilate parallel to the *y*-axis, scale factor 4.
- **2 a** Reflect in the *x*-axis.
 - **b** Translate 5 units down.
 - **c** Dilate parallel to the *x*-axis, scale factor 2.
- **3 a** Translate 3 units right.
 - **b** Dilate parallel to *y*-axis scale factor 3. (Or: Dilate parallel to *x*-axis scale factor $\frac{1}{\sqrt{2}}$)
 - **c** Dilate parallel to *x*-axis scale factor $\frac{1}{3}$.

(Or: Dilate parallel to *y*-axis scale factor 9.)

Exercise 7D PAGE 149

- **1** A, C, D
- **2** $x^2 + y^2 = 100, a = 8, b = \sqrt{91}, c = -10, d = -5\sqrt{3}$
- **3 a** $(x-2)^2 + (y+3)^2 = 25$
 - **b** $(x-3)^2 + (y-2)^2 = 49$
 - **c** $(x+10)^2 + (y-2)^2 = 45$
 - **d** $(x+1)^2 + (y+1)^2 = 36$

4 a $x^2 + y^2 - 6x - 10y = -9$ **b** $x^2 + y^2 + 4x - 2y = 2$ **c** $x^2 + y^2 + 6x + 2y = -6$ **d** $x^2 + y^2 - 6x - 16y = -45$ **5** a 5, (0, 0) **b** 0.6, (0, 0) **c** 5, (3, -4) **d** 10, (-7, 1) **e** 3, (3, -2) **f** 5, (-1, 3) **g** 10, (-1, 7) **h** 15, (-5, 7) i 12, (10, 5) j = 2, (0.5, -2.5)**6** $\sqrt{5}$ **7** y = -11x + 298 $(x-3)^2 + (y-4)^2 = 36$ 9 $(x+4)^2 + (y+3)^2 = 9$ **b** $\gamma^2 = x + 4$ **10 a** $(y-2)^2 = x$ **c** $(\gamma - 1)^2 = x - 2$ **d** $(y+2)^2 = x-3$ **11** a 15 **b** The circles have just one point in common because the distance between the centres equals the sum of the radii. **12 a** $2\sqrt{5}$ **b** The circles have no points in common because the distance between the centres exceeds the sum of the radii. **13** (1, -2) and (8, 5) **14** (-2, 7) and (-10, 5) **15** (5, 10) **16** *a* < 26 Miscellaneous exercise seven PAGE 152 1 a y = 0.5(x+3)(x-2)(x-4)**b** $\gamma = 2(x+2)^2(x-4)$ **2 a** $x = 2 \pm \sqrt{10}$ **b** $x = 2 \pm \sqrt{10}$ **3** Centre at (-3, 5), radius 7 **4** a 4 **b** 16 **c** 64 **d** 0 and 1 **5** f_2 gradient 2.5, f_4 gradient -2 **6** $\gamma = 0.4x - 7$ **7 a** x = -7, x = 2.25, x = 2.5**b** x = -5.25, x = -1.5, x = 7**c** x = 3**d** No real solutions. **8 a** Statements A and C **b** Statements B and D **c** Statements B and D **d** Statements A and C **e** Statement A **f** Statements A and C **g** Statements B and D **h** Statement B **9 a** x = -9, x = 3.5**b** x = 2, x = 6**c** x = -1, x = 0.6**d** x = -11, x = 0.8, x = 7**e** x = -5, x = 1, x = 3 **f** x = -5, x = -2, x = 1.5

10 a Cubicb Quadraticc None of the listed typesd Cubic

e Reciprocal **f** Linear

11 a c = 4 **b** b = -5 **c** (x-3)(x-1)(x-4)

- **12 a** If x is doubled in value m must be halved in value if the system is to remain in balance.
 - **b** The relationship between *x* and *m* is one of inverse proportion.

If x is multiplied by some factor k then m needs

to be multiplied by $\frac{1}{1}$.

- If m = 20 then x must be 0.5 for the system to balance.
- **d** For the system to balance *x* cannot take negative values, it cannot be zero and, from the length of the beam, *x* cannot exceed 3. Hence the domain consists of all real numbers greater than 0 and less than or equal to 3, i.e. $\{x \in \mathbb{R}: 0 < x \le 3\}$.

For this domain the rule will output m values such

that
$$m \ge \frac{10}{3}$$
. Hence the range consists of all real numbers greater than or equal to $\frac{10}{3}$,

i.e. $\{m \in \mathbb{R} : m \ge \frac{10}{3}\}.$

13 The triangular piece that has been removed has an area of 752 mm² and a perimeter of 128 mm, both answers given to the nearest whole number.

Exercise 8A PAGE 162

1	4	2	3	3	6	4	5
5	4	6	4	7	3,6	8	3,2
9	4,5	10	2,3	11	3, 2.5	12	1,4

Investigation PAGE 163

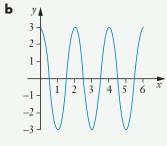
In the graph of $y = a \sin x$ the amplitude is *a*, or to be more correct |a|.

Changing the value of *a* changes the amplitude. The graph is stretched (or compressed) vertically. (If *a* changes sign the graph reflects in the *x*-axis.)

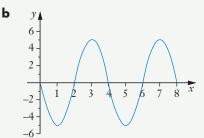
The graph of $y = a \sin bx$ performs *b* cycles in the interval that $y = \sin x$ would perform 1 cycle.

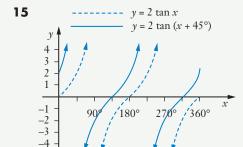
The period of the graph is $\frac{2\pi}{b}$, if radians are used, or $\frac{360}{b}$ for degrees.

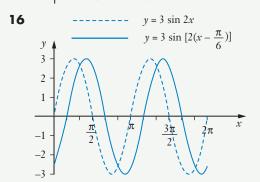
Changing the value of *b* changes the period. The graph is stretched or compressed horizontally.


In the graph of $y = a \sin [b(x - c)]$ changing the value of *c* translates the graph horizontally.

In the graph of $y = a \sin [b(x - c)] + d$ changing the value of *d* translates the graph vertically.


Discuss your findings for the cosine and tangent function with others in your class.


Exercise 8B PAGE 165


1 a 1 **b** 2 **d** 3 4 С 3 e 2 f 5 **h** 3 g **2** a 360° **b** 180° 360° **d** 180° C 720° **f** 120° **h** 1080° 90° е g i 180° $\frac{\pi}{2}$ 3 2π **b** π d a **c** 2π $\frac{\pi}{3}$ $\frac{2\pi}{3}$ f e 4π **h** π g i 0.5 **4 a** Max at $(\frac{\pi}{2}, 1)$. Min at $(\frac{3\pi}{2}, -1)$. **b** Max at $(\frac{\pi}{2}, 3)$. Min at $(\frac{3\pi}{2}, 1)$. **c** Max at $(\frac{3\pi}{2}, 1)$. Min at $(\frac{\pi}{2}, -1)$. **d** Max at $(\frac{\pi}{4}, 4)$ and at $(\frac{5\pi}{4}, 4)$. Min at $(\frac{3\pi}{4}, 2)$ and at $(\frac{7\pi}{4}, 2)$. **e** Max at $(\frac{3\pi}{4}, 4)$. Min at $(\frac{7\pi}{4}, 2)$. **b** 2,120° **c** 2,60° **5** a 3,90° **d** 3,270° **6 a** 3, $\frac{\pi}{4}$ **b** 5, $\frac{3\pi}{2}$ **c** 2, $\frac{11\pi}{6}$ **d** 3, $\frac{\pi}{2}$ **7** a 2 **b** 3 **c** -3 **d** Approx. –1.3 **b** -2 8 **a** 3 **b** -1 9 **a** 2 **b** -3, 2 **c** 2, 6 **d** 3, $\frac{2\pi}{2}$ **10** a 2,3 **b** -3, 3 **c** -3, 2 **d** 2, $\frac{\pi}{2}$ **11** a 1,2 **12 a** a = 2, b = 30, 390**b** $y = -2 \sin (x - 210)^{\circ}$ **13 a** Period 2, Amplitude 3.

14 a Period 4, Amplitude 5.

Exercise 8C PAGE 172

1	Positive	2	Positive	3	Negative
4	Negative	5	Negative	6	Negative
7	Positive	8	Positive	9	Positive
10	Negative	11	Negative	12	Negative
13	sin 40°	14	−sin 70°	15	-sin 20°
16	sin 80°	17	$\sin \frac{\pi}{6}$	18	$-\sin\frac{\pi}{6}$

19 sin $\frac{\pi}{5}$	20 $-\sin\frac{\pi}{5}$	21 -cos 80°
22 -cos 20°	23 cos 60°	24 cos 60°
25 $-\cos \frac{\pi}{5}$	26 $-\cos \frac{\pi}{10}$	27 $-\cos \frac{\pi}{10}$
28 $\cos \frac{\pi}{10}$	29 –tan 80°	30 tan 20°
31 –tan 60°	32 tan 20°	33 $\tan \frac{\pi}{5}$
34 $-\tan \frac{\pi}{5}$	35 $\tan \frac{\pi}{5}$	36 $-\tan \frac{\pi}{5}$
37 $-\frac{\sqrt{3}}{2}$	38 $\frac{1}{\sqrt{3}}$	39 $-\frac{1}{2}$
40 0	41 0	42 $\frac{\sqrt{3}}{2}$
43 $-\frac{1}{\sqrt{2}}$	44 $-\frac{1}{\sqrt{2}}$	45 $-\frac{1}{2}$
46 $-\frac{\sqrt{3}}{2}$	47 $\frac{1}{\sqrt{3}}$	48 $-\frac{1}{\sqrt{2}}$
49 $\frac{1}{\sqrt{2}}$	50 0	51 1
52 $\frac{1}{2}$		
Evorcico 8D		

Exercise 8D PAGE 177

1	60°, 300°	2	210°, 33	0° 3	45°, 225°
4	225°, 315°	5	$\frac{\pi}{4}, \frac{3\pi}{4}$	6	$\frac{3\pi}{4}, \frac{5\pi}{4}$
7	$\frac{3\pi}{4}, \frac{7\pi}{4}$	8	$\frac{\pi}{3}, \frac{4\pi}{3}$	9	± 30°
10	-90°	11	-30°, 15	0° 12	0°, ± 180°
13	$\frac{\pi}{3}, \frac{2\pi}{3}$	14	$\pm \frac{2\pi}{3}$	15	$\frac{\pi}{6}, \frac{5\pi}{6}$
16	$\pm \frac{\pi}{2}$	17	$\pi + 0.98$	18	±116.1°
19	15°, 105°		20	$\frac{\pi}{24}, \frac{11\pi}{24},$	$\frac{13\pi}{24}, \frac{23\pi}{24}$
21	-70°, 10°, 50°		22	$\frac{\pi}{6}, \frac{\pi}{3}, \frac{7\pi}{6},$	$\frac{4\pi}{3}$
23	$\frac{5\pi}{18}, \frac{7\pi}{18}, \frac{17\pi}{18},$	$\frac{19\pi}{18}$,	$\frac{29\pi}{18}, \frac{31\pi}{18}$	<u>.</u>	
24	$\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$		25	45°, 135°,	225°, 315°
26	$\pm \frac{\pi}{6}, \pm \frac{5\pi}{6}$		27	0°, ±60°, ±	180°

(265

28
$$\pm \frac{\pi}{3}, \pm \pi$$
 29 $\frac{5\pi}{12}, \frac{23\pi}{12}$

Exercise 8E PAGE 180

- **1** 14.5°, 165.5° **2** $\pm \frac{5\pi}{6}, \pm \frac{\pi}{6}$ **3** $\frac{\pi}{2}$ **4** $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$ **5** 0°, 180°, 210°, 330°, 360° **6** 11.5°, 120°, 168.5°, 240° **7** $\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$
- **3**, **3**, **3**, **3 8** -135°, -63.4°, 45°, 116.6° **9** ±60°
- **10** $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{5\pi}{2}, \frac{17\pi}{6}$

Exercise 8F PAGE 185

1	$\sin 3x$	2 $\cos 2x$	3	$\sin 4x$
4	$\cos 8x$	5 $\frac{\sqrt{2}(\sqrt{3})}{4}$	<u>3</u> +1) 6	$2 - \sqrt{3}$
7	$\frac{\sqrt{2}(\sqrt{3}+1)}{4}$	8 $\frac{\sqrt{2}(\sqrt{3})}{4}$	<u>3-1)</u> 9	$2 + \sqrt{3}$
10	$a = \sqrt{2}$, $b = \sqrt{2}$	11	$c = 4\sqrt{3}, d$	= 4
12	$e = 2\sqrt{3}, f = -2$	13	$\sqrt{3}, \frac{4\pi}{3}$	
14	a $\frac{56}{65}$	b $\frac{63}{65}$		
15	a $-\frac{44}{125}$	b $\frac{3}{5}$		
21	a $-\frac{56}{65}$	b $\frac{63}{65}$	c	$-\frac{56}{33}$
22	$\frac{\pi}{12}, \frac{7\pi}{12}$	23	8 0°, 320°	
24	-40°, 80°	25	3 0°, 210°	

Alternating currents PAGE 186

Amplitude \approx 340 volts. Period 0.02 seconds. $V = 340 \sin 100\pi t$

Average weekly temperatures PAGE 187

 $T = 18 - 12 \sin \frac{\pi}{26} x$

Average weekly temperature exceeded 25° C on 15 of the weeks.

Tidal motion PAGE 187

1 Amplitude 5, Period 2π .

Compare your answers to those of others in your class.

Miscellaneous exercise eight PAGE 188

- Amplitude 7, Period 2π.
 Amplitude 3, Period 2π.
 Amplitude 1, Period 2π/2, i.e. π.
 Amplitude 1, Period 2π/3.
 Amplitude 1, Period 2π/0.5, i.e. 4π.
- **7** Amplitude 3, Period $\frac{2\pi}{4}$, i.e. $\frac{\pi}{2}$.
- **8** Amplitude 4, Period $\frac{2\pi}{5}$.
- **9** Amplitude 2, Period $\frac{2\pi}{\pi}$. i.e. 2.

10	θ	$-\frac{3\pi}{4}$	$-\frac{2\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{4\pi}{3}$	$\frac{7\pi}{3}$	$\frac{9\pi}{4}$	11π
	sin θ	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	0
	cos θ	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	-1
	tan θ	1	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\sqrt{3}$	1	0

11 a Neither **b** Parallel **c** Perpendicular

12 a 13.2 **b** 13.2

- **13** The smallest angle of the triangle is 21°, to the nearest degree.
- **14** a (2,0), (3,0), (-2,0), (-7,0)
 - **b** (0, 0), (2, 0), (-3, 0), (4, 0)
 - **c** (2, 0), (3, 0), (-3, 0)
 - **d** (2, 0)
 - **e** (7,0)
 - **f** (-5, 0), (-1.5, 0), (3.5, 0), (6, 0)
- **15** $k_1 = 0.5, k_2 = -10, k_3 = 4, k_4 = 2, k_5 = 2, k_6 = -12, k_7 = 13, k_8 = 10, k_9 = 1, k_{10} = -3, k_{11} = 1, k_{12} = 2, k_{13} = -3, k_{14} = -5, k_{15} = 1, k_{16} = -9, k_{17} = 27, k_{18} = -26, k_{19} = 5, k_{20} = 2, k_{21} = 5, k_{22} = 2, k_{23} = 45, k_{24} = 5, k_{25} = -4, k_{26} = 3$

b b = 5

- **16 a** *a* = 2, *c* = -12
 - **c** (-4, 0), (1.5, 0), (2, 0)

17 a Maximum turning point at (-1, 26). Minimum turning point at (-1, 26). Minimum turning point at (-1, 16). Minimum turning point at (-1, 21). Minimum turning point at (-1, 63).	17	a	Maximur	n tu	ırning poi	nt a	t (-1, 26). I	Min	imum	9	a	67	Ь	3					
b Maximum turning point at (-1, 16). Minimum turning point at (3, -16). c Maximum turning point at (3, -17). Minimum turning point at (-1, 21). Minimum turning point at (-1, 21). d Maximum turning point at (-1, 21). Minimum turning point at (-1, -21). e Maximum turning point at (-1, 30). Minimum turning point at (-1, -21). e Maximum turning point at (-1, 5). Minimum turnin																	12	11	
c Maximum turning point at (1, 21). Minimum turning point at (3, 11). Minimum turning point at (3, 11). Minimum turning point at (-1, -21). 15 a 0.9 f a 0.7 a 10 b 12 c 9 d 10 e 0.9 f 3.10 Maximum turning point at (-1, -21). 15 a 10 b 12 c 9 d 16 16 17 0.1 18 a (-1, 0), (2, 0), (5, 0) b 0, 10) i 18 a (-1, 0), (2, 0), (5, 0) b 0, 10) i 18 a 17 0.2 a a 1 15 a 13 c 0 d 3 4 1 10 13 a 1 10 10 10 10 10 10 10 10 11 10 <th></th> <th>b</th> <th></th> <th></th> <th></th> <th></th> <th>t (-1, 16). I</th> <th>Min</th> <th>imum</th> <th></th> <th></th> <th>65</th> <th></th> <th></th> <th>c</th> <th>8</th> <th></th> <th></th> <th></th>		b					t (-1, 16). I	Min	imum			65			c	8			
turning point at (-3, -11). d Maximum turning point at (-1, -21). e Maximum turning point at (-1, -21). Maximum turning point at (-1, -21). Maximum turning point at (-1, -3). Minimum turning point at (-1, -3). Minimum turning point at (-5, -11). 18 a (-1, 0, (2, 0), (5, 0) b (0, 10) c $a = 8$ d $b = -8$ e $c = -10$ f (3, -4). Minimum g (0, 5) h $d = 0$ i Use a graphic calculator to check your sketch. x = -0.4, x = 2.4, x = 5 19 a $\frac{13}{20}$ b $\frac{13}{40}$ c 0 d $\frac{3}{4}$ Exercise 9A PAGE 193 1 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{1}{2}$ d $\frac{1}{18}$ e $\frac{2}{3}$ 2 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ a $\frac{1}{18}$ b $\frac{1}{16}$ 3 a 0.3 b 0.7 c 0.5 d 0.8 4 a $\frac{1}{8}$ b $\frac{1}{8}$ c $\frac{3}{8}$ d $\frac{1}{2}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ d $\frac{1}{3}$ e $\frac{1}{6}$ 4 $\frac{1}{3}$ e $\frac{1}{6}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ d $\frac{1}{3}$ e $\frac{1}{6}$ 7 a $\frac{1}{2}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 6 a $\frac{3}{7}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 6 a $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{47}{100}$ d $\frac{12}{25}$ e 1 f $\frac{1}{2}$ c $\frac{1}{7}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 6 a $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{10}{47}$ d $\frac{12}{57}$ 8 a 0.7 b 0.3 c 0.9 d 0.3 7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 37 6 $(10 - 67)$ f $\frac{1}{3}$ g $\frac{1}{7}$ h $\frac{7}{9}$ 8 a 7 b 9 c 10 d 37 6 $(10 - 67)$ f $\frac{1}{3}$ g $\frac{1}{7}$ h $\frac{7}{9}$		c					t (1, 21), N	linii	mum	14					C	0.1		d	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-					- (-,)									0			10
f Maximum turning point at $(-5, -1)$. f Maximum turning point at $(1.5, -11)$. i $13 a (-1,0), (2,0), (5,0) b (0,10) (5, -10) (6, -3, -1)$. i $13 a (-1,0), (2,0), (5,0) b (0,10) (7, -10) $		d					t (3, 11). N	liniı	num	15	a		b						
f Maximum turning point at $(-0.5, 21)$. Minimum turning point at $(1.5, -11)$. i $\frac{18}{19}$ 18 a (-1, 0), (2, 0), (5, 0) b (0, 10) c a = 1 $\frac{1}{40}$ b $\frac{13}{40}$ c 0 d $\frac{3}{4}$ c a = 8 d b = -8 d b $\frac{1}{40}$ b $\frac{13}{40}$ c 0 d $\frac{3}{4}$ g (0, 5) h d = 0 1 a $\frac{1}{4}$ f 1 i Use a graphic calculator to check your sketch. $x \approx -0.4, x \approx 2.4, x \approx 5$ 18 a 0.3 b 0.38 19 269.4 cm ² PAGE 193 Exercise 9A PAGE 193 Exercise 9B PAGE 199 1 a $\frac{1}{6}$ b $\frac{1}{3}$ a $\frac{1}{3}$ a $\frac{1}{3}$ a $\frac{1}{18}$ $\frac{1}{6}$ $\frac{1}{18}$ $\frac{1}{6}$ $\frac{1}{20}$ 1		е					t (-1, 63). I	Min	imum		е	$\frac{1}{19}$	f	$\frac{3}{19}$	g	$\frac{13}{19}$		h	$\frac{16}{19}$
18 a (-1, 0), (2, 0), (5, 0) b (0, 10) 16 a $\frac{17}{40}$ b $\frac{13}{40}$ c 0 d $\frac{3}{4}$ e $c = a = 8$ d $b = -8$ e $\frac{1}{4}$ b $\frac{13}{40}$ c 0 d $\frac{3}{4}$ e $c = -10$ f $(3, -4)$. Minimum e $\frac{1}{4}$ f 1 i Use a graphic calculator to check your sketch. $x = -0, 4, x = 2.4, x = 5$ 17 0.2 18 a 0.3 b 0.38 19 269.4 cm ² PAGE 193 Exercise 9A PAGE 193 Exercise 9B PAGE 199 1 $a = \frac{1}{6}$ $b = \frac{1}{3}$ $c = \frac{1}{2}$ $d = \frac{1}{12}$ $b = \frac{1}{2}$ $c = \frac{5}{12}$ $a = \frac{1}{16}$ $b = \frac{1}{3}$ $c = \frac{1}{2}$ $b = \frac{1}{3}$ $c = \frac{7}{10}$ $b = \frac{1}{3}$ $c = \frac{7}{10}$ $d = \frac{37}{100}$ 2 $a = \frac{1}{8}$ $f = \frac{1}{4}$ $c = \frac{3}{3}$ $d = \frac{1}{2}$ $c = \frac{5}{12}$ $b = \frac{1}{3}$ $c = \frac{7}{10}$ $d = \frac{37}{100}$ 4 $a = \frac{1}{8}$ $b = \frac{1}{8}$ <th></th> <th>f</th> <th>Maximur</th> <th>n tu</th> <th>ırning poi</th> <th>nt a</th> <th></th> <th>). M</th> <th>inimum</th> <th></th> <th>i</th> <th>$\frac{18}{19}$</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		f	Maximur	n tu	ırning poi	nt a). M	inimum		i	$\frac{18}{19}$							
c $a = 8$ d $b = -8$ i i $a = 0$ $a = 1$ $a = 0$ $a = 1$	18	a								• •				13		0			3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	, , , ,					16	a	40	b	40	C	0		d	4
i Use a graphic calculator to check your sketch. x = -0.4, x = 2.4, x = 5 19 269.4 cm ² Exercise 9A PAGE 193 1 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{1}{2}$ d $\frac{1}{3}$ e $\frac{2}{3}$ 2 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ d $\frac{1}{18}$ e $\frac{5}{5}$ f $\frac{13}{18}$ 3 a 0.3 b 0.7 c 0.5 d 0.8 4 a $\frac{1}{8}$ b $\frac{1}{8}$ c $\frac{3}{8}$ d $\frac{1}{2}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ d $\frac{1}{3}$ e $\frac{1}{6}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ 6 a $\frac{3}{5}$ b $\frac{47}{100}$ c $\frac{7}{10}$ d $\frac{37}{100}$ 7 a $\frac{1}{2}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 6 a $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{47}{100}$ d $\frac{12}{25}$ 8 a 0.7 b 0.3 c 0.9 d 0.3 7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 i 1		е	c = -10			f	(3, -4). <i>N</i>	lini	mum		e	1	f	1					
18 a 0.3 b 0.38 19 269.4 cm^2 18 a 0.3 b 0.38 19 a $\frac{13}{20}$ b $\frac{13}{15}$ Exercise 9A PAGE 193 1 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{1}{2}$ d $\frac{1}{3}$ e $\frac{2}{3}$ 2 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ d $\frac{1}{18}$ e $\frac{5}{18}$ f $\frac{13}{18}$ 3 a $\frac{1}{18}$ b $\frac{1}{5}$ 2 a $\frac{1}{4}$ b $\frac{1}{3}$ 3 a 0.3 b 0.7 c 0.5 d 0.8 4 a $\frac{1}{52}$ b $\frac{1}{20}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ 6 a $\frac{3}{5}$ b $\frac{47}{100}$ c $\frac{7}{10}$ d $\frac{37}{100}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ 7 a $\frac{1}{2}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 6 a $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{47}{100}$ d $\frac{12}{25}$ 8 a 0.7 b 0.3 c 0.9 d 0.3 7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 a (7 0 10) b (1) b (1) (2 5 7 0) b (1) (2 5 7 0) b (1) (2 5 7 0) c 10 d 3 i 1		g	(0, 5)			h	d = 0						-	1					
19 269.4 cm^2 Exercise 9A PAGE 193 1 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{1}{2}$ d $\frac{1}{3}$ e $\frac{2}{3}$ 2 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ d $\frac{1}{18}$ e $\frac{5}{18}$ f $\frac{13}{18}$ 3 a 0.3 b 0.7 c 0.5 d 0.8 4 a $\frac{1}{18}$ b $\frac{1}{6}$ 4 a $\frac{1}{18}$ b $\frac{1}{8}$ c $\frac{3}{8}$ d $\frac{1}{2}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ d $\frac{1}{3}$ e $\frac{1}{6}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ 6 a $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{47}{100}$ d $\frac{12}{25}$ e $\frac{7}{10}$ f $\frac{11}{50}$ 7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 a 0.327 b 0.672 B a 7 b 9 c 10 d 3 b 13 Exercise 9B PAGE 199 Exercise 9B FAGE 199 1 a $\frac{1}{6}$ b $\frac{1}{5}$ 2 a $\frac{1}{4}$ b $\frac{1}{3}$ 2 a $\frac{1}{4}$ b $\frac{1}{3}$ 3 a $\frac{1}{18}$ b $\frac{1}{6}$ 4 a $\frac{1}{52}$ b $\frac{1}{20}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ 6 a $\frac{3}{5}$ b $\frac{477}{100}$ c $\frac{7}{10}$ d $\frac{377}{100}$ 7 a $\frac{1}{2}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 8 a 0.77 b 0.33 c 0.9 d 0.33 7 a 0.327 b 0.672 8 a 7 b 9 9 c 100 d 3 i 1 a $\frac{1}{10}$ 1 $\frac{1}{2}$ 1 b $\frac{1}{3}$ 1 $\frac{1}{7}$ 1 b $\frac{1}{3}$ 1 b $\frac{1}{3}$ 1 b $\frac{1}{3}$ 1 c $\frac{1}{13}$ 1 c $\frac{1}{13}$ 1 b $\frac{1}{3}$ 1 c $\frac{1}{13}$ 1 c $\frac{1}$		i	0			or to	o check yo	ur sl	ketch.										
Exercise 9A PAGE 193 1 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{1}{2}$ d $\frac{1}{3}$ e $\frac{2}{3}$ 2 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ a $\frac{1}{18}$ e $\frac{5}{18}$ f $\frac{13}{18}$ 3 a 0.3 b 0.7 c 0.5 d 0.8 4 a $\frac{1}{8}$ b $\frac{1}{8}$ c $\frac{3}{8}$ d $\frac{1}{2}$ 5 a $\frac{7}{25}$ b $\frac{15}{26}$ e $\frac{1}{8}$ f $\frac{1}{4}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ d $\frac{1}{3}$ e $\frac{1}{6}$ e $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{47}{100}$ d $\frac{12}{25}$ e $\frac{7}{10}$ f $\frac{53}{100}$ g $\frac{37}{47}$ h $\frac{23}{53}$ d $\frac{1}{3}$ e $\frac{1}{6}$ F a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 i 1	10	24		<i>x</i> ≈	2.4, $x = 5$					18									
Exercise 9A PAGE 193 1 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{1}{2}$ d $\frac{1}{3}$ e $\frac{2}{3}$ 2 a $\frac{1}{2}$ b $\frac{1}{2}$ c $\frac{5}{12}$ d $\frac{1}{18}$ e $\frac{5}{18}$ f $\frac{113}{18}$ 3 a 0.3 b 0.7 c 0.5 d 0.8 4 a $\frac{1}{8}$ b $\frac{1}{8}$ c $\frac{3}{8}$ d $\frac{1}{2}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ d $\frac{1}{3}$ e $\frac{1}{6}$ 6 a $\frac{3}{5}$ b $\frac{47}{100}$ c $\frac{7}{10}$ d $\frac{37}{100}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ 6 a $\frac{1}{12}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 6 a $\frac{3}{5}$ b $\frac{47}{100}$ c $\frac{7}{10}$ d $\frac{37}{100}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ 6 a $\frac{3}{5}$ b $\frac{47}{100}$ c $\frac{7}{10}$ d $\frac{37}{25}$ 6 a $\frac{3}{5}$ b $\frac{15}{126}$ 6 a $\frac{3}{5}$ b $\frac{15}{126}$ 6 a $\frac{3}{5}$ b $\frac{47}{100}$ c $\frac{7}{10}$ d $\frac{37}{100}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ 6 a $\frac{1}{12}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 6 a $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{47}{100}$ d $\frac{12}{25}$ e $\frac{7}{10}$ f $\frac{11}{50}$ 7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 i 1	19	26	9.4 cm ²							19	a	$\frac{13}{20}$	b	$\frac{13}{15}$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Exe	rci	se 9A F	PAG	E 193									15					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	L.	1	_	1			Exe	erci	se 9B	PAG	E 199					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		a	2	b	2	С	2				~	1	h	1					
$2 a \frac{1}{2} b \frac{1}{2} c \frac{5}{12} d \frac{1}{18} e \frac{5}{18} f \frac{13}{18} 3 a \frac{1}{18} b \frac{1}{6} 3 a \frac{1}{18} b \frac{1}{6} 3 a \frac{1}{18} b \frac{1}{6} 4 a \frac{1}{18} b \frac{1}{6} 4 a \frac{1}{52} b \frac{1}{20} 4 a \frac{1}{52} b \frac{1}{20} 4 a \frac{1}{52} b \frac{15}{26} e \frac{1}{8} f \frac{1}{4} 5 a \frac{3}{8} d \frac{1}{2} 5 a \frac{3}{5} b \frac{47}{100} c \frac{7}{10} d \frac{37}{100} 5 a 0 b \frac{5}{6} c \frac{1}{3} d \frac{1}{3} e \frac{1}{6} 6 a \frac{3}{5} b \frac{47}{100} c \frac{7}{10} d \frac{37}{100} 7 a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1 6 a \frac{1}{10} b \frac{3}{20} c \frac{47}{100} d \frac{12}{25} e \frac{7}{10} f \frac{11}{50} 7 a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1 6 a 0.3 c 0.9 d 0.3 7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 i 1$		Ь	1	P	2						a	6	D	5					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ŭ	3	C	3					2	a	1	Ь	1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	a	$\frac{1}{2}$	b	$\frac{1}{2}$	с	5			-	-	4	-	3					
$d = \frac{1}{18} e \frac{1}{18} f \frac{1}{18} = \frac{1}{18} f \frac{1}{18} = 4 a \frac{1}{52} b \frac{1}{20}$ $4 a \frac{1}{8} b \frac{1}{8} c \frac{3}{8} d \frac{1}{2} = 5 a \frac{7}{25} b \frac{15}{26}$ $e \frac{1}{8} f \frac{1}{4} = 6 a \frac{3}{5} b \frac{47}{100} c \frac{7}{10} d \frac{37}{100}$ $5 a 0 b \frac{5}{6} c \frac{1}{3} = e \frac{1}{6} = 7 a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $6 a \frac{1}{10} b \frac{3}{20} c \frac{47}{100} d \frac{12}{25} = e 1 f \frac{1}{2}$ $e \frac{7}{10} f \frac{11}{50} = 6 a \frac{1}{3} = 0 a \frac{1}{2} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{11}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{11}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{11}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{11}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{11}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{11}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{11}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{1}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{1}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e \frac{7}{10} f \frac{1}{50} = 6 a \frac{1}{3} a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} a \frac{1}{7} b \frac{7}{9}$ $e \frac{1}{10} a \frac{1}{10} b \frac{1}{10} c $			-		2					3	a	$\frac{1}{10}$	b	$\frac{1}{\epsilon}$					
3 a 0.3 b 0.7 c 0.5 d 0.8 4 a $\frac{1}{52}$ b $\frac{1}{20}$ 4 a $\frac{1}{8}$ b $\frac{1}{8}$ c $\frac{3}{8}$ d $\frac{1}{2}$ 5 a $\frac{7}{25}$ b $\frac{15}{26}$ e $\frac{1}{8}$ f $\frac{1}{4}$ 5 a 0 b $\frac{5}{6}$ c $\frac{1}{3}$ d $\frac{1}{3}$ e $\frac{1}{6}$ e $\frac{1}{6}$ f $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{47}{100}$ d $\frac{12}{25}$ e 1 f $\frac{1}{2}$ f $\frac{1}{12}$ b $\frac{1}{3}$ c $\frac{1}{3}$ d 1 6 a $\frac{1}{10}$ b $\frac{3}{20}$ c $\frac{47}{100}$ d $\frac{12}{25}$ e 1 f $\frac{1}{2}$ e 1 f $\frac{1}{2}$ f $\frac{1}{3}$ g $\frac{1}{7}$ h $\frac{7}{9}$ 8 a 0.7 b 0.3 c 0.9 d 0.3 7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 i 1		d	$\frac{1}{18}$	е	$\frac{5}{18}$	f	$\frac{13}{18}$					18		- -					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	a		Ь		c		d	0.8	4	a	$\frac{1}{52}$	b	$\frac{1}{20}$					
$e \frac{1}{8} f \frac{1}{4} \qquad 6 a \frac{3}{5} b \frac{47}{100} c \frac{7}{10} d \frac{37}{100} \\ 5 a 0 b \frac{5}{6} c \frac{1}{3} \\ d \frac{1}{3} e \frac{1}{6} \\ e \frac{1}{6} \\ e \frac{7}{10} f \frac{11}{50} \\ e \frac{7}{10} f \frac{11}{50} \\ 7 a 0.327 b 0.672 \\ 8 a 7 b 9 c 10 d 3 \\ e (8 0.10) $										F		7	Ŀ						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	a		D		C	8	a	2	Э	a		D			_			
$d \frac{1}{3} e \frac{1}{6} $ $f \frac{1}{10} b \frac{3}{20} c \frac{47}{100} d \frac{12}{25} $ $e \frac{7}{10} f \frac{11}{50} $ $7 a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e 1 f \frac{1}{2} $ $e 1 f \frac{1}{2} $ $8 a 0.7 b 0.3 c 0.9 d 0.3$ $e 0.7 f \frac{1}{3} g \frac{1}{7} h \frac{7}{9}$ $8 a 7 b 9 c 10 d 3$ $i 1$		е	$\frac{1}{8}$	f	$\frac{1}{4}$					6	a	$\frac{3}{5}$	b	$\frac{47}{100}$	c	$\frac{7}{10}$		d	$\frac{37}{100}$
$d \frac{1}{3} e \frac{1}{6} $ $f \frac{1}{10} b \frac{3}{20} c \frac{47}{100} d \frac{12}{25} $ $e \frac{7}{10} f \frac{11}{50} $ $7 a \frac{1}{2} b \frac{1}{3} c \frac{1}{3} d 1$ $e 1 f \frac{1}{2} $ $e 1 f \frac{1}{2} $ $8 a 0.7 b 0.3 c 0.9 d 0.3$ $e 0.7 f \frac{1}{3} g \frac{1}{7} h \frac{7}{9}$ $8 a 7 b 9 c 10 d 3$ $i 1$	5	a	0	b	5	c	$\frac{1}{2}$				е	$\frac{2}{z}$	f	53	g	37		h	$\frac{23}{52}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							3												
$e \frac{7}{10} f \frac{11}{50}$ 7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 6 (8 9 10) c 10 f (1 3 5 7 0) 8 a 0.7 b 0.3 c 0.9 d 0.3 1 i 1			-							7		-		-	С	$\frac{1}{3}$		d	1
7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 a $(8, 9, 10)$ b $(1, 3, 5, 7, 9)$ c $(1, 3, 5, 7, 9)$ e $(1, 3, 5, 7, 9)$ i $(1, 3, 5, 7, 9)$	6	a	$\frac{1}{10}$	b	$\frac{3}{20}$	c	$\frac{47}{100}$	d	$\frac{12}{25}$		е	1	f	$\frac{1}{2}$					
7 a 0.327 b 0.672 8 a 7 b 9 c 10 d 3 a $(8, 9, 10)$ b $(1, 3, 5, 7, 9)$ c $(1, 3, 5, 7, 9)$ e $(0, 7)$ f $\frac{1}{3}$ g $\frac{1}{7}$ h $\frac{7}{9}$ i 1		е	7	f	11					8	a	0.7	b	0.3	c	0.9		d	0.3
8 a 7 b 9 c 10 d 3 a (8 9 10) f (1 3 5 7 9) i 1	-											0.7	£	1		1		k	7
							10	٦	2				т	3	g	7		n	9
g {9} h {1, 3, 5, 7, 8, 9, 10} 9 a $\frac{1}{3}$ b $\frac{5}{9}$ c $\frac{7}{9}$ d $\frac{1}{9}$	ō																		
										9	a	1	b	5	с	7		d	1
		Э	(7)				(1, 5, 5, 7	, 0,	, i0j			3		9		9			9

e	$\frac{2}{3}$	f	$\frac{4}{9}$	g	$\frac{1}{5}$	h	$\frac{1}{3}$	4	a	$\frac{1}{4}$	b	$\frac{3}{16}$	c	$\frac{2}{3}$	d	$\frac{6}{13}$
i	$\frac{5}{7}$							5	a	$\frac{1}{20}$	b	$\frac{1}{5}$	c	$\frac{1}{5}$	d	$\frac{1}{20}$
10 c	$\frac{2}{5}$	b	$\frac{1}{10}$	c	$\frac{1}{4}$	d	$\frac{3}{5}$			$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		20
e	$\frac{1}{3}$							Exe	rci	se 9D	PAG	E 206				
11 c	$\frac{1}{6}$	b	$\frac{1}{3}$	c	0	d	0	1	a	$\frac{5}{6}$	b	$\frac{1}{36}$	c	$\frac{11}{36}$	d	$\frac{1}{18}$
e	$\frac{1}{3}$	f	$\frac{2}{3}$	g	$\frac{1}{3}$	h	$\frac{2}{3}$		е	$\frac{4}{9}$						
12 c	$\frac{1}{10}$	b	$\frac{1}{5}$	c	0	d	$\frac{1}{4}$	2	a	$\frac{1}{2}$	b	$\frac{1}{6}$	c	$\frac{1}{12}$	d	$\frac{7}{12}$
e	$\frac{1}{6}$	f	$\frac{5}{6}$	g	$\frac{2}{5}$				е	$\frac{1}{4}$	f	$\frac{1}{2}$				
13 c	$\frac{1}{9}$	b	0	c	$\frac{1}{6}$	d	$\frac{1}{6}$	3		$\frac{1}{52}$		$\frac{1}{13}$	c	$\frac{1}{2}$	d	$\frac{1}{13}$
e	$\frac{4}{9}$								е	$\frac{1}{4}$	f	$\frac{1}{13}$	g	$\frac{12}{13}$	h	$\frac{3}{13}$
14 c	$\frac{1}{6}$	b	$\frac{1}{3}$	c	$\frac{1}{6}$	d	$\frac{1}{5}$		i	1	j	$\frac{7}{13}$	k	$\frac{1}{52}$	I	$\frac{4}{13}$
e	$\frac{1}{9}$	f	$\frac{1}{2}$					4	a	$\frac{1}{2}$	b	$\frac{1}{4}$	c	$\frac{3}{4}$	d	$\frac{1}{2}$
15 c	$\frac{1}{20}$	b	$\frac{1}{2}$	c	$\frac{2}{5}$	d	$\frac{3}{10}$	Exe	rci	se 9E	PAGE	214				
e	$\frac{3}{10}$	f	$\frac{1}{10}$	g	$\frac{1}{5}$	h	$\frac{1}{11}$	1		0.6		0.12	c	0.6	d	0.3
	$\frac{1}{6}$		$\frac{1}{2}$	k	•	I		2	e a	0.2 0.4	f b	0.7 0.2	с	0.26	d	0.8
					2					0.1		$\frac{3}{13}$				
16 c	Z	b	$\frac{1}{4}$	c	1	d	$\frac{1}{2}$	3	a	$\frac{7}{30}$		$\frac{7}{15}$	c	$\frac{8}{15}$	d	7
e	$\frac{1}{3}$	f	0												-	8
17 c	$\frac{1}{2}$	b	$\frac{1}{2}$					4	a	$\frac{3}{4}$		$\frac{4}{5}$	c			0
Even	cise 9C		-					5	a	0.6	b	0.56	c	$\frac{4}{7}$	d	$\frac{9}{11}$
	diagram:			n he	ere.)			6	a	$\frac{1}{2}$	b	$\frac{1}{6}$	c	$\frac{17}{60}$	d	$\frac{43}{60}$
1 c	$\frac{1}{2}$	b	$\frac{2}{3}$	c	$\frac{3}{4}$	d	$\frac{1}{2}$			_				$\frac{10}{17}$		$\frac{15}{43}$
2 c	1									$\frac{25}{36}$				1,		15
3 c			$\frac{5}{9}$							$\frac{4}{9}$		$\frac{3}{4}$	c	$\frac{55}{83}$		

9	a	0.912	b	0.03	38	c	0.03	9	d	0.563
10	α	$\frac{3}{5}$	b	$\frac{1}{6}$		c	$\frac{4}{15}$		d	$\frac{1}{6}$
	е	$\frac{5}{18}$								
Exe	rci	se 9F p	AGE	223						
1	a	$\frac{1}{3}$	b	$\frac{7}{15}$		c	$\frac{1}{3}$		d	$\frac{2}{3}$
2	a	0.8472	b	0.15	528					
3	a	0.9265	b	0.07	735					
4	a	$\frac{1}{30}$	b	$\frac{1}{20}$		c	$\frac{1}{6}$		d	$\frac{5}{6}$
5	a	0.064	b	0.11	18	c	0.21	6	d	0.784
6	a	0.1248	b	0.11	152					
7	$\frac{5}{12}$									
		010 97								
		$\frac{1}{2}$	b	$\frac{2}{3}$		c	$\frac{1}{3}$		d	$\frac{5}{6}$
10	α	$\frac{1}{3}$	b	$\frac{1}{2}$		c	$\frac{1}{6}$		d	$\frac{2}{3}$
11	a	0.8	b	0.2		с	0.2		d	0.25
		0.4					0.8			
		0.000 000	003	b	0.66			С	0.3	4
14	a	$\frac{1}{36}$		b	$\frac{25}{36}$			c	$\frac{11}{36}$	
		0.00005					5	с		1495
		0.000000						с	0.0	17
17	a	$\frac{1}{2}$	b	$\frac{2}{5}$		c	$\frac{3}{5}$		d	$\frac{7}{10}$
18	a	$\frac{8}{15}$	b	$\frac{4}{5}$						
19	a	0.13	b	0.2			2			
20	0.8	}			2	1	$\frac{3}{4}$			
Exe	rci	se 9G	PAG	E 228	3					
1	De	ependent				2	Indep	ende	ent	
3		lependent	:				Depe			
5	Мı	itually exc	elusi	ve		6	Mutu	ally o	exclu	isive
7		ot mutuall	y ex	clusiv	ve	8	Not n	nutu	ally	exclusive
9		nd d	1				D			
10	a	Independ	-		-	b		ende		0.6
12	a	0.2	b	0.25)	С	0.05		d	0.6

10		0	L	0		_	0		J.	0.5
13 15			b b	0 0.8		c	0 0.6		_	0.5 0.5
	а 0.8		D	0.0		C	0.0		a	0.5
	0.8									
18		0.4		Ь	0.48					
19		0.3			0.4					
20	a	0		_	15					
21	a	0.35 (2 d	p)	b	0.45	(2 0	dp)	с	0.1	9 (2 dp)
		The disp suggests not indep students for males for femal	arity that pend at th at t es it	y betw bein lent o ne col he co t is ju	ween g an l of ger llege ollege st 199	the Eng ider are thi %.	three ineeri Whi Engin s rises	prob ng st lst 35 eerin to 4	abi ude 5% ng s 5%	lities ent is of all tudents, whilst
22	a	· · ·					dp)			5 (2 dp)
		The fact identical on the ho The prop course is are consid or just th	sugg onou oorti alm deri	gests irs co ion o ost e ng al	that yourse f stud xactly l the s	whe is in lents the	ther th deper s on th e same	ne stu ndent ne ho whe	ude t of not the	nt is gender. urs r we
Mis	cell	aneous	exe	ercis	e nii			E 231	I	
1	a	0.5	b	0.5		c	$\frac{5}{6}$		d	$\frac{1}{6}$
		0.5								
3	x =	-4, x = 4.	5							
4	a	1	b	$\frac{1}{3}$		c	$\frac{1}{2}$			
5	a	Period 18	30°,	ampl	litude	4 u	nits.			
	b	Period 12	20°,	ampl	litude	3 u	nits.			
6	x =	-148, x =	-32	x = x	212,	x =	328.			
7		has coordi	nate	es (7,	1)					
8	a	$\frac{55}{93}$	b	$\frac{7}{93}$		c	$\frac{7}{22}$		d	$\frac{7}{38}$
9	a	(0, -28)				b	A(-2,	, 0), I	D(7	, 0)
		a = 4, b =				d	-108	< p <	< 0	
10	$\frac{\pi}{3}$,	$\frac{14\pi}{13},\frac{5\pi}{3},$	$\frac{251}{13}$	τ						
11	a	$\frac{1}{15}$	b	$\frac{3}{10}$		c	$\frac{5}{14}$		d	$\frac{5}{7}$
12	a	0.32	b	0.2		с	0.68		d	0.2
	е	0.6								
	f	Yes. Justi					0.2 =	P(B))	
		[or P(A)] [or P(A)	B) = B) B)	0.6 = 0.1	P(A) 2 = P)] P(A)	P(B)]			

Exercise 10A PAGE 238

1	40 320	2 48	3	10	4	90
5	90	6 56	7	8	8	970 200
9	96		10	120, 5!		
11	$20, \frac{5!}{5-2!}$	i.e. $\frac{5!}{3!}$	12	$60, \frac{5!}{2!}$		
13	$650, \frac{26!}{24!}$		14	358 800,	26! 22!	
15	40 320, 8!		16	504, $\frac{9!}{6!}$		

Exercise 10B PAGE 242

1	330	2	18 564
3	210	4	455
5	792	5	133 784 560
7	5 245 786 8	B	3003, 10

Exercise 10C PAGE 243

- $1 \quad a^8 + 8a^7b + 28a^6b^2 + 56a^5b^3 + 70a^4b^4 + 56a^3b^5 + 28a^2b^6 + 8ab^7 + b^8$
- **2** $a^{10} + 10a^9b + 45a^8b^2 + 120a^7b^3 + 210a^6b^4 + 252a^5b^5 + 210a^4b^6 + 120a^3b^7 + 45a^2b^8 + 10ab^9 + b^{10}$
- **3** $x^8 8x^7y + 28x^6y^2 56x^5y^3 + 70x^4y^4 56x^3y^5 + 28x^2y^6 8xy^7 + y^8$
- **4** $x^6 + 12x^5y + 60x^4y^2 + 160x^3y^3 + 240x^2y^4 + 192xy^5 + 64y^6$
- **5** $p^6 12p^5q + 60p^4q^2 160p^3q^3 + 240p^2q^4 192pq^5 + 64q^6$
- **6** $243x^5 810x^4y + 1080x^3y^2 720x^2y^3 + 240xy^4 32y^5$

Miscellaneous exercise ten PAGE 246

- **1 a** x = 0.625 **b** x = -4 **c** x = -1 **d** x = 1.4 **e** x = 3, x = -2 **f** x = 1, x = -5 **g** x = 0.5, x = -7 **h** x = -3, x = 0.25, x = 1.8 **i** x = 9, x = -3 **j** x = -2, x = 3.5 **k** x = -1, x = 0, x = 6**l** x = -0.8, x = 1.5
- **2** A: x = -6, B: y = 16, C: y = 4x, D: y = 2x, E: y = x, F: y = x - 5, G: y = -2x, H: y = -4x + 20
- **3** 0.1

- **4** The number could be -3.5 or it could be 1.5.
- **5** The fire is approximately 19.7 km from lookout No.1 and 18.8 km from lookout No.2.

6
$$\frac{1}{6}$$

7 **a** $y = 3x + 7$ **b** $y = 3x + 11$ **c** $y = -2x + 7$
d $y = -2x + 16$ **e** $y = 0.5x + 6$
8 $x = 1 \pm \frac{\sqrt{2}}{2}$
9 $y = 1.5x + 15$
10 **a** 0.15 **b** 0.6 **c** 0.75

- 11 A and B are independent, A and C are not, B and C are not.
- **12** A and B are independent, A and C are independent, B and C are not.

13 a
$$\frac{1}{15}$$
 b $\frac{4}{15}$

- **15** Discuss your answer and reasoning with those of others in your class.
- **16** a p = -0.5, p = 1 b $x = 0, x = \pm \frac{2\pi}{2}$
- **17 a** 16 **b** 6 **c** -4 **d** -4 **e** 14 **f** 8 **g** $x^2 - x + 6$ **h** $4x^2 - 2x + 6$ **i** -1 or 4 **i** -2 or 7
- **18** a = -0.5, b = 5, c = 0.5, d = 2, e = -3, f = 2, g = 3, h = -3, j = 3, k = 1, m = 11, n = 3, p = -8, q = -20, r = -10.

19
$$a = 2, b = \frac{\pi}{3}$$

22
$$a = 3, b = 2, C(-6, 0), D(0, -4)$$

23
$$y = 6 \sin \frac{2\pi x}{5} + 2$$

24 $\sqrt{162 - 30\sqrt{2}}$

25
$$x = \frac{\pi}{18}, \frac{5\pi}{18}, \frac{13\pi}{18}, \frac{17\pi}{18}$$

26 $x^6 - 12x^5y + 76x^4y^2 - 192x^3y^3 + 264x^2y^4 - 200xy^5 + 65y^6$ **27** 17%